Acta Crystallographica Section E

## Structure Reports Online

ISSN 1600-5368

# Bis( $\mu$ -4-bromoisophthalato)bis[bis(1,10-phenanthroline)manganese(II)] tetrahydrate

# Hong-Ping Xiao,\* Mao-Lin Hu and Ji-Xin Yuan

School of Chemistry and Materials Science, Wenzhou Normal College, Zhejiang Wenzhou 325027, People's Republic of China

Correspondence e-mail: hp\_xiao@wznc.zj.cn

#### **Key indicators**

Single-crystal X-ray study  $T=298~\mathrm{K}$  Mean  $\sigma(\mathrm{C-C})=0.009~\mathrm{\mathring{A}}$  R factor = 0.075 wR factor = 0.153 Data-to-parameter ratio = 12.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

In the title centrosymmetric compound,  $[Mn_2(C_8H_3BrO_4)_2-(C_{12}H_8N_2)_4].4H_2O$ , the  $Mn^{II}$  atom is surrounded by two O atoms from two 4-bromoisophthalate dianions and four N atoms from two phen (phen is 1,10-phenanthroline) heterocycles in a distorted octahedral geometry. Two bromoisophthalate dianions link two  $[Mn(phen)_2]^{2+}$  cations in bismonodentate mode, resulting in a binuclear complex.

Received 13 January 2005 Accepted 27 January 2005 Online 5 February 2005

#### Comment

Many metal-organic coordination polymers constructed by using isophthalic acid (Hou *et al.*, 2003; Xiao *et al.*, 2004), 5-hydroxyisophthalic acid (Li *et al.*, 2004; Plater *et al.*, 2001) and 5-nitroisophthalic acid (Si *et al.*, 2004; Xiao *et al.*, 2005) have been reported. However, complexes formed from 4-bromoisophthalic acid are rather limited (Eddaoudi *et al.*, 2002), and the title complex, (I), represents one such example.

The asymmetric unit of (I) contains a  $[Mn(phen)_2]^{2+}$  cation (phen is 1,10-phenanthroline, a bridging 4-bromoisophthalate anionic ligand and two water molecules. In (I), two  $[Mn(phen)_2]^{2+}$  cations are linked by two 4-bromoisophthalate dianions in bis-monodentate mode to form a binuclear complex.

In the title centrosymmetric compound, each Mn<sup>II</sup> atom is coordinated by four N atoms from two phen heterocycles and two O atoms from two 4-bromoisophthalate dianions to furnish a highly distorted octahedral coordination environment (Fig. 1). The Mn—N bond lengths are in the range 2.263 (4)–2.323 (4) Å. The *trans* angles of the octahedron are 158.12 (15), 162.08 (14) and 168.72 (14)°, and the other angles are in the range 72.28 (14)–102.12 (14)° (Table 1).

The mean planes through the two phen ligands form a dihedral angle of  $85.80 (7)^{\circ}$ , *i.e.* the two phen ligands are nearly perpendicular to each other. There are intermolecular

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

### metal-organic papers

hydrogen-bonding interactions between the water molecules and uncoordinated carboxyl O atoms (Table 2). Weak  $\pi$ – $\pi$  stacking interactions are observed between inversion-related phen rings; the shortest centroid–centroid distance of 3.591 (4) Å is observed between the N1-pyridine ring at (x, y, z) and its inversion-related equivalent at (1 - x, 2 - y, -z). All these interactions link the binuclear units into a three-dimensional network structure.

#### **Experimental**

Compound (I) was synthesized by the hydrothermal method from a mixture of 4-bromoisophthalic acid (0.3 mmol),  $Mn(CH_3COO)_2$ ·-4 $H_2O$  (0.3 mmol), 1,10-phenanthroline (0.5 mmol) and water (8.0 ml) in a 15.0 ml Telfon-lined stainless steel reactor. The solution was heated at 423 K for 5 d. After reaction, the vessal was cooled slowly to room temperature to give yellow crystals.

#### Crystal data

| $[Mn_2(C_8H_3BrO_4)_2(C_{12}H_8N_2)_4]$ | Z = 1                                     |
|-----------------------------------------|-------------------------------------------|
| $4H_2O$                                 | $D_x = 1.572 \text{ Mg m}^{-3}$           |
| $M_r = 1388.79$                         | Mo $K\alpha$ radiation                    |
| Triclinic, $P\overline{1}$              | Cell parameters from 2167                 |
| a = 10.2104 (14)  Å                     | reflections                               |
| b = 12.1592 (16)  Å                     | $\theta = 2.3 - 21.0^{\circ}$             |
| c = 13.9932 (19)  Å                     | $\mu = 1.87 \text{ mm}^{-1}$              |
| $\alpha = 66.705 (2)^{\circ}$           | T = 298 (2)  K                            |
| $\beta = 70.878 \ (2)^{\circ}$          | Prism, yellow                             |
| $\gamma = 70.700 \ (2)^{\circ}$         | $0.27 \times 0.13 \times 0.08 \text{ mm}$ |
| $V = 1466.6 (3) \text{ Å}^3$            |                                           |

#### Data collection

| 5245 independent reflections           |
|----------------------------------------|
| 4112 reflections with $I > 2\sigma(I)$ |
| $R_{\rm int} = 0.032$                  |
| $\theta_{\rm max} = 25.2^{\circ}$      |
| $h = -12 \rightarrow 12$               |
| $k = -14 \rightarrow 14$               |
| $l = -16 \rightarrow 16$               |
|                                        |

#### Refinement

refinement

| Refinement on $F^2$             | $w = 1/[\sigma^2(F_o^2) + (0.0627P)^2]$            |
|---------------------------------|----------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.075$ | + 0.3548P]                                         |
| $wR(F^2) = 0.153$               | where $P = (F_o^2 + 2F_c^2)/3$                     |
| S = 1.20                        | $(\Delta/\sigma)_{\text{max}} = 0.001$             |
| 5245 reflections                | $\Delta \rho_{\text{max}} = 0.59 \text{ e Å}^{-3}$ |
| 412 parameters                  | $\Delta \rho_{\min} = -0.34 \text{ e Å}^{-3}$      |
| H atoms treated by a mixture of |                                                    |

**Table 1** Selected geometric parameters (Å, °).

independent and constrained

| Mn1-O1           | 2.073 (3)   | Mn1-N1           | 2.298 (4)   |
|------------------|-------------|------------------|-------------|
| $Mn1-O3^{i}$     | 2.114 (3)   | Mn1-N2           | 2.302 (4)   |
| Mn1-N4           | 2.263 (4)   | Mn1-N3           | 2.323 (4)   |
|                  |             |                  |             |
| $O1-Mn1-O3^{i}$  | 90.08 (14)  | N4-Mn1-N2        | 95.87 (13)  |
| O1-Mn1-N4        | 102.00 (15) | N1-Mn1-N2        | 72.30 (14)  |
| $O3^{i}$ -Mn1-N4 | 102.12 (14) | O1-Mn1-N3        | 100.59 (15) |
| O1-Mn1-N1        | 91.14 (15)  | $O3^{i}$ -Mn1-N3 | 168.72 (14) |
| $O3^{i}-Mn1-N1$  | 95.19 (14)  | N4-Mn1-N3        | 72.28 (14)  |
| N4-Mn1-N1        | 158.12 (15) | N1-Mn1-N3        | 88.28 (14)  |
| O1-Mn1-N2        | 162.08 (14) | N2-Mn1-N3        | 86.05 (14)  |
| $O3^{i}$ -Mn1-N2 | 84.80 (14)  |                  |             |
|                  |             |                  |             |

Symmetry code: (i) 1 - x, 1 - y, 1 - z.



Figure 1 The coordination environment of the Mn atom in (I), with atomic numbering, showing displacement ellipsoids at the 30% probability level. The unlabelled atoms are generated by the symmetry code (1 - x, 1 - y, 1 - z). The dashed lines indicate hydrogen bonds.

**Table 2** Hydrogen-bonding geometry (Å, °).

| $D-\mathrm{H}\cdots A$                                                                               | $D-\mathrm{H}$ | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D-\mathrm{H}\cdot\cdot\cdot A$ |
|------------------------------------------------------------------------------------------------------|----------------|-------------------------|-------------------------|---------------------------------|
| $ \begin{array}{c} O5 - H5A \cdots O4 \\ O5 - H5B \cdots O6 \\ O6 - H6B \cdots O2^{ii} \end{array} $ | 0.86 (7)       | 2.01 (7)                | 2.852 (8)               | 165 (6)                         |
|                                                                                                      | 0.84 (8)       | 2.06 (8)                | 2.900 (11)              | 177 (8)                         |
|                                                                                                      | 0.86 (2)       | 2.08 (7)                | 2.707 (7)               | 129 (7)                         |

Symmetry code: (ii) 1 - x, -y, 1 - z.

The water H atoms were located in a difference map and refined isotropically. O—H and H···H distances involving atom O6 were restrained to 0.85 (2) and 1.39 (2) Å, respectively and  $U_{\rm iso}({\rm H6B})$  was set at 1.5 $U_{\rm eq}({\rm O6})$ . H atoms attached to C atoms were placed in calculated positions and included in the refinement in the riding-model approximation [C—H = 0.93 Å and  $U_{\rm iso}({\rm H})$  = 1.2 $U_{\rm eq}({\rm C})$ ].

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2002); software used to prepare material for publication: *SHELXL97*.

We acknowledge financial support by the Zhejiang Provincial Natural Science Foundation (No. Y404294) and the Wenzhou Science and Technology Project of China (No. S2003A008).

#### References

Bruker (2002). SMART (Version 5.618), SAINT (Version 6.02a). SADABS (Version 2.03) and SHELXTL (Version 5.03). Bruker AXS Inc., Madison, Wisconsin, USA.

## metal-organic papers

- Eddaoudi, M., Kim. J., Vodak, D., Sudik, A., Wachter, J., O'Keeffe, M. & Yaghi, O. M. (2002). *PNAS*, **99**, 4900–4904.
- Hou, Y., Shen, E. H., Wang, S. T., Wang, E. B., Xiao, D. R., Li, Y. G., Xu, L. & Hu, C. W. (2003). *Inorg. Chem. Commun.* 6, 1347–1349.
- Li, X. J., Cao, R., Sun, D. F., Bi, W. H., Wang, Y. Q., Li, X. & Hong, M. C. (2004). Cryst. Growth Des. 4, 775–778.
- Plater, M. J., Forerman, M. R. S. J., Howie, R. A., Skakle, J. M. S., William, S. A. M., Coronado, E. & Gomez-Garcy, C. J. (2001). Polyhedron, 20, 2293–2303.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Si, S. F., Li, C. H., Wang, R. J. & Li, Y. D. (2004). J. Mol. Struct. 703, 11–17.
- Xiao, H.-P., Li, X.-H. & Cheng, Y.-Q. (2005). Acta Cryst. E61, m158–m159.
- Xiao, H.-P., Li, X.-Y. & Hu, M.-L. (2004). *Acta Cryst.* E**60**, m468–m470.